2com
From Proteopedia
The solution structure of the SWIRM domain of human LSD1
Structural highlights
FunctionKDM1A_HUMAN Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.[1] [2] [3] [4] [5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSWIRM is an evolutionarily conserved domain involved in several chromatin-modifying complexes. Recently, the LSD1 protein, which bears a SWIRM domain, was found to be a demethylase for Lys4-methylated histone H3. Here, we report a solution structure of the SWIRM domain of human LSD1. It forms a compact fold composed of 6 alpha helices, in which a 20 amino acid long helix (alpha4) is surrounded by 5 other short helices. The SWIRM domain structure could be divided into the N-terminal part (alpha1-alpha3) and the C-terminal part (alpha4-alpha6), which are connected to each other by a salt bridge. While the N-terminal part forms a SWIRM-specific structure, the C-terminal part adopts a helix-turn-helix (HTH)-related fold. We discuss a model in which the SWIRM domain acts as an anchor site for a histone tail. Solution structure of the SWIRM domain of human histone demethylase LSD1.,Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, Ikari M, Sato M, Terada T, Nagase T, Ohara O, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S Structure. 2006 Mar;14(3):457-68. PMID:16531230[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Inoue M | Kigawa T | Koshiba S | Tanaka A | Tochio N | Umehara T | Yokoyama S