6oel
From Proteopedia
Engineered Fab bound to IL-4 receptor
Structural highlights
DiseaseIL2RG_HUMAN Defects in IL2RG are the cause of severe combined immunodeficiency X-linked T-cell-negative/B-cell-positive/NK-cell-negative (XSCID) [MIM:300400; also known as agammaglobulinemia Swiss type. A form of severe combined immunodeficiency (SCID), a genetically and clinically heterogeneous group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. Patients present in infancy recurrent, persistent infections by opportunistic organisms. The common characteristic of all types of SCID is absence of T-cell-mediated cellular immunity due to a defect in T-cell development.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in IL2RG are the cause of X-linked combined immunodeficiency (XCID) [MIM:312863. XCID is a less severe form of X-linked immunodeficiency with a less severe degree of deficiency in cellular and humoral immunity than that seen in XSCID.[11] [12] FunctionIL2RG_HUMAN Common subunit for the receptors for a variety of interleukins. Publication Abstract from PubMedLigand-induced dimerization is the predominant mechanism through which secreted proteins activate cell surface receptors to transmit essential biological signals. Cytokines are a large class of soluble proteins that dimerize transmembrane receptors into precise signaling topologies, but there is a need for alternative, engineerable ligand scaffolds that specifically recognize and stabilize these protein interactions. Recombinant antibodies can potentially serve as robust and versatile platforms for cytokine complex stabilization, and their specificity allows for tunable modulation of dimerization equilibrium. Here, we devised an evolutionary strategy to isolate monovalent antibody agonists that bridge together two different receptor subunits in a cytokine-receptor complex, precisely as the receptors are disposed in their natural signaling orientations. To do this, we screened a naive antibody library against a stabilized ligand/receptor ternary complex that acted as a 'molecular cast' of the natural receptor dimer conformation. Our selections elicited 'stapler' single-chain variable fragments (scFvs) of antibodies that specifically engage the interleukin-4 receptor heterodimer. The 3.1 A resolution crystal structure of one such stapler revealed that, as intended, this scFv recognizes a composite epitope between the two receptors as they are positioned in the complex. Extending our approach, we evolved a stapler scFv that specifically binds to and stabilizes the interface between the interleukin-2 cytokine and one of its receptor subunits, leading to a 15-fold enhancement in interaction affinity. This demonstration that scFvs can be selected to recognize epitopes that span protein interfaces presents new opportunities to engineer structurally defined antibodies for a broad range of research and therapeutic applications. A strategy for the selection of monovalent antibodies that span protein dimer interfaces.,Spangler JB, Moraga I, Jude KM, Savvides CS, Garcia KC J Biol Chem. 2019 Aug 6. pii: RA119.009213. doi: 10.1074/jbc.RA119.009213. PMID:31387945[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations 3 reviews cite this structure No citations found See AlsoReferences
|
|