Flagellar protein

From Proteopedia

(Redirected from Flagella, bacterial)
Jump to: navigation, search

Contents


Function

The bacterial flagellum consists of a filament, a universal joint (hook), and a motor (basal body).
The bacterial flagellum consists of a filament, a universal joint (hook), and a motor (basal body).

Flagella (singular: flagellum) enable bacteria to swim towards sources of nutrition, and away from sources of toxins. Such directed motility is termed chemotaxis. Rapid swimming helps Bdellovibrio penetrate and parasitize their host bacteria, but flagella are not always essential for virulence[1]. Flagella are important in responses to quorum sensing[2] and biofilm formation[3][4]. Flagella may also be involved in functions other than motility[5].

  • FlgA is essential for P-ring formation in Salmonella and E. coli[6].
  • FlgD is essential for hook assembly in Salmonella[7].
  • FlgE is the subunit of the hook that connects the basal body and the filament[8].
  • FlgG is a rod protein in Salmonella[9].
  • FlgJ functions as a lytic beta-N-acetylglucosaminidase[10].
  • FlgK and FlgL have a role in the smooth connectivity between the hook and the filament[11].
  • FlhA serves as a docking platform for flagellar chaperones in complex with their filament-type substrates[12].
  • FlhB is a component of the flagellar secretion system and has a role in protein export[13].
  • FlhE acts as chaperone to regulate flow of proteins through the flagellar type III secretion system[14].
  • FlhF is a signal recognition particle-like GTPase regulating flagellar number and polarity[15].
  • FliD regulates filament assembly by chaperoning Flagellin proteins[16]. It is the component of the cap at the tip of the external filament[17].
  • FliG is a cytoplasmic protein which binds to the transmembranal FliF to form the cytoplasmic flagellar ring[18].
  • FliH, FliI and FliJ make an ATPase complex which is part of the flagellar export apparatus[19].
  • FliL is part of the motor stator in Helicobacter[20].
  • FliM is involved in the clockwise rotation of the flagellar motor[21].
  • FliN with FliM and FliG form the switch complex that functions in flagellar assembly, rotation and switcing[22].
  • FliP, FliQ and FliR are part of the membrane-embedded flagellar export apparatus[23].
  • FliS is a flagellin specific type III secretion system chaperone that facilitates the export of flagellin[24].
  • FliT is a flagellin specific type III secretion system chaperone that facilitates the export of FliD[25].
  • FliY is part of the B. subtilis switch complex[26].
  • FlcpA and FcpB are flagellar coiling proteins of leptospira[27],[28] .

For further information, please see Flagellum at Wikipedia. The bacterial flagellum is made up of about 25 different proteins. There are only a few copies of some proteins, and tens of thousands of copies of the filament protein, FliC. The flagellum is made up of three major regions, as follows.

Motor

At the base of a bacterial flagellum is a reversible motor, also called the basal body. The source of energy driving the motor is an electromotive gradient of, in some bacteria, protons (hydrogen ions, H+) or, in other bacteria, sodium ions (Na+). The gradient has a higher concentration of ions outside the cell, and a lower concentration of ions inside the cell. Ions flow from outside to inside the bacterial cell, passing through the motor and driving its rotation by a mechanism which is poorly understood.

For more details see Flagellar biosynthetic protein

Filament (Propeller)

The flagellar filament is a relatively rigid, helical rod, typically many times the length of the bacterial cell. Many motile bacteria, including Salmonella, have multiple flagella extending from each cell. Rotation of the filaments by the motor is what propels the cell. More...

For more details see Flagellar proteins and Flagellar filament of bacteria.

Hook (Universal Joint)

The filament is attached to the motor with the flagellar hook, which is a molecular universal joint. The hook is flexible, allowing the angle between the filament and the bacterial cell surface to change over a wide range. However, the hook efficiently transmits torque from the motor to the filament, causing it to rotate.

For details see

Assembly

   

Assembly of the bacterial flagellum. Credit: Protonic Nanomachine Project, used with permission of Keiichi Namba, Osaka University.

During assembly of the flagellum, its protein components are transported through hollow cores of the basal body, hook and filament, assembling at the end of the nascent flagellum[29]. The Namba Group has prepared a movie illustrating their understanding of the assembly process as of about 2004.

3D structures of flagellar protein

Flagellar protein 3D structures

Lists of Flagellar Structures

These are automatically-generated lists of PDB codes.


and there are undoubtedly other flagellum-related Categories ...

See Also

Within Proteopedia:

External Links


PDB ID 1io1

Drag the structure with the mouse to rotate

References and Notes

  1. Lockman HA, Curtiss R 3rd. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun. 1990 Jan;58(1):137-43. PMID:2152887
  2. Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev. 2004 Jun;28(3):261-89. PMID:15449604
  3. Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009 Mar;17(3):109-18. Epub 2009 Feb 21. PMID:19231189 doi:10.1016/j.tim.2008.12.004
  4. Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol. 2007 Jun;189(12):4418-24. Epub 2007 Apr 6. PMID:17416647 doi:10.1128/JB.01967-06
  5. Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol. 2007 Oct;15(10):456-61. Epub 2007 Oct 24. PMID:17920274 doi:10.1016/j.tim.2007.09.006
  6. Matsunami H, Yoon YH, Meshcheryakov VA, Namba K, Samatey FA. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica. Sci Rep. 2016 Jun 7;6:27399. doi: 10.1038/srep27399. PMID:27273476 doi:http://dx.doi.org/10.1038/srep27399
  7. Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2272-81. PMID:8157595
  8. You Y, Ye F, Mao W, Yang H, Lai J, Deng S. An overview of the structure and function of the flagellar hook FlgE protein. World J Microbiol Biotechnol. 2023 Mar 21;39(5):126. PMID:36941455 doi:10.1007/s11274-023-03568-6
  9. Saijo-Hamano Y, Uchida N, Namba K, Oosawa K. In vitro characterization of FlgB, FlgC, FlgF, FlgG, and FliE, flagellar basal body proteins of Salmonella. J Mol Biol. 2004 May 28;339(2):423-35. PMID:15136044 doi:10.1016/j.jmb.2004.03.070
  10. Herlihey FA, Moynihan PJ, Clarke AJ. The essential protein for bacterial flagella formation FlgJ functions as a β-N-acetylglucosaminidase. J Biol Chem. 2014 Nov 7;289(45):31029-42. PMID:25248745 doi:10.1074/jbc.M114.603944
  11. Bulieris PV, Shaikh NH, Freddolino PL, Samatey FA. Structure of FlgK reveals the divergence of the bacterial Hook-Filament Junction of Campylobacter. Sci Rep. 2017 Nov 16;7(1):15743. doi: 10.1038/s41598-017-15837-0. PMID:29147015 doi:http://dx.doi.org/10.1038/s41598-017-15837-0
  12. Inoue Y, Kinoshita M, Kida M, Takekawa N, Namba K, Imada K, Minamino T. The FlhA linker mediates flagellar protein export switching during flagellar assembly. Commun Biol. 2021 May 31;4(1):646. PMID:34059784 doi:10.1038/s42003-021-02177-z
  13. Meshcheryakov VA, Barker CS, Kostyukova AS, Samatey FA. Function of FlhB, a membrane protein implicated in the bacterial flagellar type III secretion system. PLoS One. 2013 Jul 11;8(7):e68384. doi: 10.1371/journal.pone.0068384. Print 2013. PMID:23874605 doi:http://dx.doi.org/10.1371/journal.pone.0068384
  14. Lee J, Harshey RM. Loss of FlhE in the flagellar Type III secretion system allows proton influx into Salmonella and Escherichia coli. Mol Microbiol. 2012 May;84(3):550-65. PMID:22435757 doi:10.1111/j.1365-2958.2012.08043.x
  15. Zhang K, He J, Cantalano C, Guo Y, Liu J, Li C. FlhF regulates the number and configuration of periplasmic flagella in Borrelia burgdorferi. Mol Microbiol. 2020 Jun;113(6):1122-1139. PMID:32039533 doi:10.1111/mmi.14482
  16. Postel S, Deredge D, Bonsor DA, Yu X, Diederichs K, Helmsing S, Vromen A, Friedler A, Hust M, Egelman EH, Beckett D, Wintrode PL, Sundberg EJ. Bacterial flagellar capping proteins adopt diverse oligomeric states. Elife. 2016 Sep 24;5. pii: e18857. doi: 10.7554/eLife.18857. PMID:27664419 doi:http://dx.doi.org/10.7554/eLife.18857
  17. Ikeda T, Oosawa K, Hotani H. Self-assembly of the filament capping protein, FliD, of bacterial flagella into an annular structure. J Mol Biol. 1996 Jun 21;259(4):679-86. PMID:8683574 doi:10.1006/jmbi.1996.0349
  18. Levenson R, Zhou H, Dahlquist FW. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG. Biochemistry. 2012 Jun 26;51(25):5052-60. PMID:22670715 doi:10.1021/bi3004582
  19. Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M, Namba K. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. Microbiologyopen. 2016 Jun;5(3):424-35. PMID:26916245 doi:10.1002/mbo3.340
  20. Tachiyama S, Chan KL, Liu X, Hathroubi S, Peterson B, Khan MF, Ottemann KM, Liu J, Roujeinikova A. The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2118401119. PMID:35046042 doi:10.1073/pnas.2118401119
  21. Toker AS, Macnab RM. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol. 1997 Oct 31;273(3):623-34. PMID:9356251 doi:10.1006/jmbi.1997.1335
  22. Paul K, Blair DF. Organization of FliN subunits in the flagellar motor of Escherichia coli. J Bacteriol. 2006 Apr;188(7):2502-11. PMID:16547037 doi:10.1128/JB.188.7.2502-2511.2006
  23. Ward E, Renault TT, Kim EA, Erhardt M, Hughes KT, Blair DF. Type-III secretion pore formed by flagellar protein FliP. Mol Microbiol. 2018 Jan;107(1):94-103. PMID:29076571 doi:10.1111/mmi.13870
  24. Ozin AJ, Claret L, Auvray F, Hughes C. The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett. 2003 Feb 28;219(2):219-24. PMID:12620624 doi:10.1016/S0378-1097(02)01208-9
  25. Minamino T, Kinoshita M, Imada K, Namba K. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol Microbiol. 2012 Jan;83(1):168-78. PMID:22111876 doi:10.1111/j.1365-2958.2011.07924.x
  26. Bischoff DS, Ordal GW. Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex. Mol Microbiol. 1992 Sep;6(18):2715-23. PMID:1447979 doi:10.1111/j.1365-2958.1992.tb01448.x
  27. Wunder EA Jr, Figueira CP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, Liu J, Reis MG, Charon NW, Buschiazzo A, Picardeau M, Ko AI. A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete. Mol Microbiol. 2016 Aug;101(3):457-70. PMID:27113476 doi:10.1111/mmi.13403
  28. Wunder EA Jr, Slamti L, Suwondo DN, Gibson KH, Shang Z, Sindelar CV, Trajtenberg F, Buschiazzo A, Ko AI, Picardeau M. FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira. Front Cell Infect Microbiol. 2018 May 8;8:130. PMID:29868490 doi:10.3389/fcimb.2018.00130
  29. Minamino T, Imada K, Namba K. Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst. 2008 Nov;4(11):1105-15. Epub 2008 Sep 24. PMID:18931786 doi:10.1039/b808065h

Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Eric Martz, Joel L. Sussman, Fadel A. Samatey, Jaime Prilusky

Personal tools