Steroid Hormones and their receptors
From Proteopedia
This large and diverse class of steroids are biosynthesized from isoprenoids and structurally resemble cholesterol. Mammalian steroid hormones can be grouped into five groups by the receptors to which they bind: glucocorticoids, mineralocorticoids, androgens, estrogens, and progestogens. Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands. For example, estradiol is an important estrogen steroid hormone in both women and men. It is a typical steroid with core four-ring system (ABCD), composed of 17 carbon atoms.
CorticosteroidsCorticosteroids are a class of steroid hormones that are produced in the adrenal cortex of vertebrates, as well as the synthetic analogues of these hormones. Two main classes of corticosteroids, glucocorticoids and mineralocorticoids, are involved in a wide range of physiological processes. Prednisone and its derivatives have some mineralocorticoid action in addition to the glucocorticoid effect.
Cortisol (hydrocortisone) is a corticosteroid with both glucocorticoid and mineralocorticoid activity and effects. GlucocorticoidsGlucocorticoids are corticosteroids that bind to the glucocorticoid receptor. Dexamethasone is a glucocorticoid medication. It is the most potent glucocorticoid and it has not mineralocorticoid potency.
MineralocorticoidsMineralocorticoids are a class of corticosteroids. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances (electrolyte balance and fluid balance). The primary mineralocorticoid is aldosterone.
Sex steroidsAndrogensAn androgen is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. The major androgen in males is testosterone. It is the primary sex hormone and anabolic steroid in males. It is a steroid from the androstane class. It exerts its action through binding to and activation of the androgen receptor.
EstrogensThere are three major endogenous estrogens that have estrogenic hormonal activity: estrone (E1), estradiol (E2), and estriol (E3). Estradiol, an estrane, is the most potent and prevalent. Another estrogen called estetrol (E4) is produced only during pregnancy. Click here to see the difference between conformations of estrogen receptor α complexed with raloxifene and a corepressor peptide (morph was taken from Gallery of Morphs of the Yale Morph Server). Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of SERMs[22]. Selective estrogen receptor modulators, such as estradiol 17-derived metal complexes, have been synthesized as targeted probes for the diagnosis and treatment of breast cancer. The detailed 3D structure of estrogen receptor α ligand-binding domain (ER-LBD) bound with a novel estradiol-derived metal complex, estradiol-pyridinium tetra acetate europium (III) (EPTA-Eu) at 2.6Å resolution was reported (2yat). The residues Glu353, Arg394 and His524 and the conserved water molecule (W1006) form hydrogen bonds with EPTA-Eu. The hydrogen bonds are shown as white dashed lines. Superposition of this structure with the structure of native ligand 17β-estradiol (E2) in the complex of E2/ERα-LBD complex (1ere) reveals that the E2 core of EPTA-Eu overlaps closely with that of E2 itself. The hydrogen bonds network made by additional estrogen receptor residues (e.g. Glu419 of H7 and Glu339 of H3, this depends on subunit), may work together with the E2 17β hydroxyl-His524 hydrogen bond and tighten the neck of the LBP upon binding of the endogenous ligand E2. 4-Hydroxytamoxifen (OHT) is an other selective estrogen receptor modulator. Superposition of EPTA-Eu/ERα-LBD complex on OHT/ERα-LBD complex (3ert) shows that there is similar network of hydrogen bonds in both complexes, except for His524 which does not form hydrogen bond with OHT in the OHT/ERα-LBD complex. Superposition of structures of all these three complexes: E2/ERα-LBD (1ere), OHT/ERα-LBD (3ert) and EPTA-Eu/ERα-LBD shows that they overlap well in the majority portions of the domain, but differ significantly in the region of the 'omega loop'. They display different synergistic reciprocating movements, depending on the specific nature of the ligand bound. The structure of estrogen receptor complexed with EPTA-Eu provides important information pertinent to the design of novel functional ER targeted probes for clinical applications. ER is a modular protein composed of a ligand binding domain, a DNA binding domain and a transactivation domain. ER is a DNA-binding transcription factor. ER bound to DNA. The DNA binding domain can be clearly observed in this scene; the highlighted yellow helix in close proximity to the DNA is part of the DNA binding domain. The blue beta sheet close to the yellow DNA binding alpha helix is also part of the DNA binding domain. The transactivation domain forms an alpha helix which is colored in purple. The transactivation domain activates RNA polymerase when the receptor binds to DNA. The ligand binding domain may be observed here with the following scene. Agonist ferutinine bound ER. The ligand ferutinine (highlighted in pink) is bound by the ligand binding domain, composed of the blue colored alpha helices immediately surrounding the purple ligand. Another view of the ligand binding domain is shown here, with estradiol bound. ER ligand binding domain bound to estradiol. ER is functional as a ligand-dependent transcription factor. ER responds to both agonist and antagonist ligands and can associate with the nuclear matrix. Differences in the structure of the receptor are observed depending on what ligand ER has bound (if any). Through comparisons of ER bound to agonist and antagonist ligands, some structural components may be highlighted. Agonist estradiol bound er The specific conformation of this tight loop of alpha helices and beta sheets around the ligand shows a complex capable of activating ER's transcription loci. This complex allows for the activation signal that will stimulate normal growth. Normal growth is stimulated when an agonist bound ER binds DNA. This occurs with the assistance of chaperon proteins. These chaperons are capable of recognizing estrogen receptor ligand complexes. When ER has bound a ligand chaperons facilitate the trans-location of the complex to the nucleus. Eventually the chaperon ligand ER complex will reach specific euchromatin, at which point the chaperons facilitate the ligand ER complex to changes conformation. This conformation will facilitate the estrogen receptor to bind the DNA major groove at specific palindromic sequences. Estradiol is a normal ligand for ER and allows for binding in the major groove of DNA. If the ligand is an antagonist the transcription factor function of estrogen receptor becomes hindered. Partial Agonist genistein bound ER The conformation of ER bound to the partial agonist genistein has a loop which is not as tight around the ligand as those found on ER with a complete agonist ligand. The ligands themselves take up different amounts of space and have varying interactions within ER. This slight difference effects the ability of the chaperon to be able to bind the receptor ligand complex to the major groove of DNA. There is a noticeable difference in the size of the pure agonist vs partial agonist scenes. Specifically, look at the width of the agonist compared to the partial agonist. Similar differences may be observed between ER which has bound the partial agonist and complete antagonist ligands. Antagonist tamoxifen bound ER The most drastic difference is noticeable between agonist and antagonist ligands. Compare the agonist scene to the Agonist estradiol bound er. Special attention should be given to the bottom right alpha helices and beta sheets that are pushed out more in the antagonist compared to the agonist bound ER.
Estrogen receptor β (ER-β) is 1 of the 2 isoforms of the estrogen receptor, a ligand-activated transcription factor which regulates the biological effects of the steroid hormone 17 β-estradiol, or estrogen, in both males and females. The complex is a hetero-tetrameric assembly consisting of 4 molecules and a ligand: 2 copies of estrogen receptor β, 2 copies of steroid receptor coactivator-1, and the ligand, Genistein. Once the ligand is bound, the complex recruits the steroid receptor coactivators, which recruit other proteins to form the transcriptional complex for initiation of transcription. This activates expression of reporter genes containing estrogen response elements. Genistein is a phytoestrogen with structural similarity to estrogen which competes for estrogen receptors. Although estrogen receptor β is widely expressed, it is not the primary estrogen receptor in most tissues. As a result, it has become a target for drug delivery, especially since it is 40x more selective for genistein than the α isoform. This enhanced selectivity may be caused by differences in residues 336 and 373 between the 2 isoforms, allowing ER-β to accommodate more polar substituents in its binding pocket. ER-β differs greatly from ER-α at the N-terminal domains, which can be seen located at opposite ends from the C termini in this rainbow representation. The protein is composed of 3 sections: a modulating N-terminal domain, a DNA-binding domain and a C-terminal ligand-binding domain.
Each ERβ contains several domains with specific functions: an N-terminal domain (NTD), a DNA-binding domain (DBD), a flexible hinge region and a C-terminal Ligand-binding domain (LBD). The complex overall is about 66% helical (10 helices; 160 residues) and 3% β-sheet (2 strands; 9 residues). The NTD is the 1st activation function (AF-1) domain that consists mostly of random coils and a small portion of helices (red) and sheets (green); it is a variable region. This lack of structure allows the region to recruit and bond many different interaction partners. This region also has the capacity to transactivate transcription without binding estrogen. The DBD binds estrogen response elements (ERE) of target genes and recruits coactivator proteins responsible for the transcription of these genes. The ERE consist of a palindromic inverted repeat 5'GGTCAnnnTGACC-3' of target genes. The DBD is a highly conserved region. It is composed of 2 C4-type Zn fingers each containing 4 Cys residues coordinating to a Zn atom. The hinge region connects the DBD and LBD. LBD binds estrogen, coregulatory proteins, corepressors and coactivators. Genistein is not generated by the endocrine system that binds ERβ like estrogen; both ligands are completely buried within the hydrophobic core (Hydrophobic, Polar) of the ERβ complex. Binding at the LBD activates transcription mediated by the DBD. This domain is entirely helical; the LBD interacts with genistein through helices. The conformationally dynamic portion of this region gives rise to ERβ’s ligand-dependent transcriptional activation (AF-2) function. A key element of AF-2 is helix 12 (H12), which acts as a conformational switch; different receptor ligands influence the orientation of H12. Agonist ligands like genistein position H12 across the ligand-binding pocket of the LBD, which provides a coactivator docking surface. Geinstein binding allows the helices of AF-2 to form a shallow hydrophobic binding site for leucine-rich motifs of coactivators to bind. This conformation provides optimal interaction with coactivators and transcription is activated. Genistein's bicyclic form allows it to hydrogen bond on opposite sides with the hydroxyls of the histidine groups on the receptor. His475's binding to the receptor causes a conformational change and activates the receptor resulting in up-regulation for coactivators. Down-regulation will occur in the presence of corepressor as they bind to repressors and indirectly regulate gene expression. In order for the estrogen receptor β genistein to bind to a receptor and activate it there must be stabilization by a coactivator. The coactivator increases the gene expression and with this increase allows it to bind to an activator group consisting of a DNA binding domain. The estrogen receptor is found to be comprised of a dimer attached to a ligand and coactivator peptide which helps to stabilize the structure of each monomer. The conformational state of helix-12 can be modified by the binding of the coactivator. This scene depicts the hydrophobic and hydrophilic residues of the estrogen receptor. The hydrophobic regions are primarily on the inside of the protein surrounding genistein (red). Having the hydrophobic residues surrounding the binding pocket will stabilize the structure. The structure of this pocket is tertiary and do to the hydrophobic interactions inside the pocket and hydrophilic interactions on the outside help to stabilize this tertiary structure. The binding pocket is hydrophobic which means that an increase in lipophilicity would increase the affinity for ligands which in this case is genistein. The genistein structure has 3 hydroxyl groups, an ether and an ester. These 3 functional groups are polar and have many possibilities for hydrogen bonding. The His475 and Met336 residues in the binding pocket are capable of forming hydrogen bonds with genistein do to the many hydrogen bond forming functional groups. These residues are different from the residues found in ERα and so the selectivity of genistein is much greater for ERβ. Upon visualizing the estrogen receptor in an arrow representation, the structure can be classified as parallel or anti-parallel. Here is the zoomed primarily hydrophobic pocket.
Binding of nuclear receptor corepressor 2 peptide and 4-hydroxytamoxifen to human estrogen-related receptor γ. The chemotherapeutic drugs bisphenol and tamoxifen are nestled between 4 alpha helices in the ERR active site. Estrone
Substrates, such as estrone sulfate, form hydrogen bonds and stacking interactions with residues from each subunit in Cavity 1 of ABCG2 multidrug transporter. Estradiol
Estriol
Estetrol
ProgestogensProgesterone Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species.
Vitamin D derivatives; secosteroids (open-ring steroids)25-hydroxy-cholecalciferol (25-D3); 25-hydroxyvitamin D3 (5ien) Calcitriol is the active form of vitamin D pro-hormone.
Vitamin D receptor (VDR) is a transcription factor. Upon binding to vitamin D, VDR forms a heterodimer with retinoid-X receptor and binds to hormone response receptors on DNA causing gene expression. The vitamin D hormone (green) binds to receptors in its target cells, controlling the synthesis of many different proteins involved in Ca transport and utilization. Vitamin D hormone binding site. Vitamin D hormone is located in deep pocket. VDR contains 2 domains: a ligand binding domain (LBD), that binds to the hormone (grey) and DNA-binding domain (DBD) that binds to DNA (green and blue are 2 same VDR structures). It pairs up with a similar protein, 9-cis retinoic acid receptor (RXR), and together they bind to the DNA, activating synthesis in some cases and repressing it in others. When serine is mutated it is replaced with a glycine which results in an inhibition of transcriptional activation. When transcription is inhibited it results in p53 accumulation, which activates and promotes p53 translocation into mitochondria leading to apoptosis. Serine is replaced with aspartic acid when mutated creating a negative charge. The negative charge at the residue inhibits DNA binding which cause a downregulation of VDR activity. VDR needs DNA binding in order for it to be activated which is only possible with a serine residue. The vitamin D nuclear receptor is a ligand-dependent transcription factor that controls multiple biological responses such as cell proliferation, immune responses, and bone mineralization. Numerous 1 α,25(OH)(2)D(3) analogues, which exhibit low calcemic side effects and/or antitumoral properties, have been synthesized. It was shown that the synthetic analogue (20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (2a) acts as a 1α,25(OH)(2)D(3) superagonist and exhibits both antiproliferative and prodifferentiating properties in vitro. Using this information and on the basis of the crystal structures of human VDR ligand binding domain (hVDR LBD) bound to 1α,25(OH)(2)D(3), 2α-methyl-1α,25(OH)(2)D(3), or 2a, a novel analogue, 2α-methyl-(20S,23S)-epoxymethano-1α,25-dihydroxyvitamin D(3) (4a) was designed, in order to increase its transactivation potency.
|
|
See also:
References
- ↑ Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol. 2001 Jul 6;310(2):433-47. PMID:11428899 doi:10.1006/jmbi.2001.4779
- ↑ Tuteja G, Kaestner KH. SnapShot: forkhead transcription factors I. Cell. 2007 Sep 21;130(6):1160. PMID:17889656 doi:http://dx.doi.org/10.1016/j.cell.2007.09.005
- ↑ Kaiser G, Gerst F, Michael D, Berchtold S, Friedrich B, Strutz-Seebohm N, Lang F, Haring HU, Ullrich S. Regulation of forkhead box O1 (FOXO1) by protein kinase B and glucocorticoids: different mechanisms of induction of beta cell death in vitro. Diabetologia. 2013 Jul;56(7):1587-95. doi: 10.1007/s00125-013-2863-7. Epub 2013, Feb 23. PMID:23435785 doi:http://dx.doi.org/10.1007/s00125-013-2863-7
- ↑ Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996 Oct;10(10):1167-77. PMID:9121485 doi:http://dx.doi.org/10.1210/mend.10.10.9121485
- ↑ Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
- ↑ Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJ, Storr HL, Metherell LA. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014 Aug;99(8):E1556-63. doi: 10.1210/jc.2013-3844. Epub, 2014 Mar 6. PMID:24601690 doi:http://dx.doi.org/10.1210/jc.2013-3844
- ↑ Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000 Oct;267(20):6102-9. PMID:11012661
- ↑ Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun. 2011 Jul 12;2:383. doi: 10.1038/ncomms1382. PMID:21750537 doi:10.1038/ncomms1382
- ↑ Murakami M, Nakatani Y, Tanioka T, Kudo I. Prostaglandin E synthase. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:383-99. PMID:12432931
- ↑ Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol. 2005 Nov 30;38(6):633-8. PMID:16336776
- ↑ Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem. 2015 May 20. PMID:25961169 doi:http://dx.doi.org/10.1021/acs.jmedchem.5b00330
- ↑ Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004 Jul;13(4):451-8. PMID:15199296
- ↑ Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat. 2007 Jan;28(1):33-40. PMID:16972228 doi:10.1002/humu.20371
- ↑ Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000 Jul 7;289(5476):119-23. PMID:10884226
- ↑ Lother A, Bergemann S, Kowalski J, Huck M, Gilsbach R, Bode C, Hein L. Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc Res. 2018 Feb 1;114(2):282-290. doi: 10.1093/cvr/cvx078. PMID:28430882 doi:http://dx.doi.org/10.1093/cvr/cvx078
- ↑ Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 2007 Jul;21(9):2185-94. doi: 10.1096/fj.06-7970com. Epub 2007 Mar 23. PMID:17384139 doi:http://dx.doi.org/10.1096/fj.06-7970com
- ↑ Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem. 2005 Sep 2;280(35):31283-93. Epub 2005 Jun 20. PMID:15967794 doi:http://dx.doi.org/10.1074/jbc.M504098200
- ↑ Bohl CE, Wu Z, Chen J, Mohler ML, Yang J, Hwang DJ, Mustafa S, Miller DD, Bell CE, Dalton JT. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. Bioorg Med Chem Lett. 2008 Oct 15;18(20):5567-70. Epub 2008 Sep 5. PMID:18805694 doi:10.1016/j.bmcl.2008.09.002
- ↑ Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993 Mar;13(3):1392-407. PMID:8441385
- ↑ Kondo N, Katsuno M, Adachi H, Minamiyama M, Doi H, Matsumoto S, Miyazaki Y, Iida M, Tohnai G, Nakatsuji H, Ishigaki S, Fujioka Y, Watanabe H, Tanaka F, Nakai A, Sobue G. Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun. 2013;4:1405. doi: 10.1038/ncomms2417. PMID:23360996 doi:http://dx.doi.org/10.1038/ncomms2417
- ↑ Ghosh, D., Griswold, J., Erman, M., Pangborn, W. " X-ray Structure of Human Aromatase Reveals An Androgen-Specific Active Site" Journal of Steroid Biochemistry and Molecular Biology. [Online] 2010,Vol. 118, Issue 4-5, p197-202[1]
- ↑ Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y